Ïðîöåäóð âû÷èñëåíèÿ ýëëèïòè÷åñêîãî èíòåãðàëà
var
n : longint;
Mult1 : real;
begin
n := 1; Mult := 1;
repeat
Mult := Mult*(4*sqr(n)/(4*sqr(n)-1));
n := n + 1;
Mult1 := 4*sqr(n)/(4*sqr(n)-1)
until Mult1 < eps
end;
59. Ïðîöåäóð âû÷èñëåíèÿ ýëëèïòè÷åñêîãî èíòåãðàëà 1-ãî ðîäà ÷åðåç áåñêîíå÷íîå ïðîèçâåäåíèå.
Procedure Elliptic(k, eps : real; var Kk : real);
var
Kk1 : real;
begin
Kk1 := k;
repeat
k := (1 - sqrt(1 - sqr(k)))/(1 + sqrt(1 - sqr(k)));
Kk1 := Kk1*(1 + k);
k := (1 - sqrt(1 - sqr(k)))/(1 + sqrt(1 - sqr(k)));
Kk := Kk1*(1 + k);
until abs(Kk1 - Kk) < eps;
Kk := Kk*Pi/2
end;
60. Ðåêóððåíòíàÿ ôóíêöèÿ âû÷èñëåíèÿ èíòåãðàëà âåðîÿòíîñòåé.
Function
FF(x : real) : real;
var
n : integer;
u, I : real;
begin
if x >= 5
then FF := 1
else if x <= -5
then FF := -1
else
begin
u := x; n := 0; I := 0;
repeat
I := I + u;
n := n + 1;
u := -u*(x*x*(2*n - 1)/(2*n*(2*n + 1)))
until abs(u) < 0.00001;
FF := 2*I/sqrt(2*Pi)
end
end;
61. Ïðîöåäóðà âû÷èñëåíèÿ èíòåãðàëà

Procedure
Integral(x, eps : real; var I : real);
var
n : integer;
u : real;
begin
u := x; n := 1; I := 0;
repeat
I := I + u;
n := n + 1;
u := -(u*x*x*(2*n - 3))/((2*n - 2)*sqr(2*n - 1))