.


           


until abs(u) < eps

end;

62. 2- .

Procedure Elliptic2(k, eps : real; var Ek : real);

var

n : integer;

u : real;

begin

u := k*k/4; n := 1; Ek := 0;

repeat

Ek := Ek + u;

n := n + 1;

u := (u*k*k*(2*n - 1)*(2*n - 3))/(4*n*n);

until abs(u) < eps;

Ek := Pi*(1 - Ek)/2

end;

63. :


Function

J(x, eps : real; n : integer) : real;

var

y, jj : real;

k : integer;

begin

k := 0; y := Extent(x, n)/Fakt(n); jj := 0;

repeat

jj := jj + y;

k := k + 1;

y := -y*x*x/(4*k*(n + k))

until abs(y) < eps;

J := jj

end;

64. .

Function

Extent_real(a, x : real) : real;

begin

Extent_real := exp(x*ln(a))

end;

65. -.

x, .

Function G(x, eps : real) : real;

var

n : longint;

g1, gg : real;

begin

n := 1; gg := Extent_real((n + 1)/n, x)/(x*(x + n));

repeat

n := n + 1;

gg := gg*n*Extent_real((n + 1)/n, x)/(x + n);

n := n + 1;

g1 := gg*n*Extent_real((n + 1)/n, x)/(x + n)

until abs(g1 - gg) < eps;

G := gg

end;

- (1, 2)

Function Gamma(x, eps : real) : real;