Паскаль. Основы программирования


              

Тем не менее, последовательность считается


Тем не менее, последовательность считается заданной, если мы владеем правилом, по которому может быть вычислен любой ее член, лишь только известен его номер.
Поэтому-то, зная правило для приближенного вычисления корней, мы можем считать заданной всю последовательность десятичных приближений к
, хотя выражения для его общего члена мы не знаем. Можно сказать, что в этом случае последовательность задается "словесным описанием".
Если последовательность - в указанном смысле - задана, то этим не только охарактеризовано все множество принимаемых ею значений в целом, но и определен порядок, в котором эти значения принимаются; каждому номеру отвечает свое значение элемента последовательности, и из двух значений то считается следующим, номер которого больше.
Еще подчеркнем, что значения элементов последовательности не должны быть обязательно различными. Например, если задать последовательность одной из формул:

то соответствующие последовательности будут:

В первом
случае мы имеем просто постоянную величину, всё "множество" принимаемых ею значений сводится к одному.
Во втором
- это множество состоит из двух значений, 1 или -1, принимаемых поочередно. Наконец, в третьем случае множество значений бесконечно, но это не мешает значениям элементов через одно равняться 0; и мы считаем, что значение 0 на пятом месте следует не только за 1 на втором месте, но и за значением 0 на первом месте.
Еще один способ задания последовательности - это рекуррентная формула. Вспомним, что это такое.
Формулу, выражающую любой член последовательности, начиная с некоторого, через предыдущие (один или несколько), называют рекуррентной
(от латинского слова recurro - возвращаться).
Подводя итог вышеизложенного можно назвать три основных способа задания последовательности.
1. Аналитический
- последовательность задается формулой общего (или n-го) члена.
2. Рекуррентный
- любой член последовательности, начиная с некоторого, выражается через предшествующие члены. При этом способе задания последовательности указывают ее первый член или несколько начальных членов и формулу, позволяющую определить любой член последовательности по известным предшествующим членам.

Содержание  Назад  Вперед